A weak periodicity condition for rings

نویسندگان

  • Hazar Abu-Khuzam
  • Howard E. Bell
  • Adil M. Yaqub
چکیده

An element x of the ring R is called periodic if there exist distinct positive integers m, n such that xm = xn; and x is potent if there exists n > 1 for which xn = x. We denote the set of potent elements by P or P(R), the set of nilpotent elements by N or N(R), the center by Z or Z(R), and the Jacobson radical by J or J(R). The ring R is called periodic if each of its elements is periodic, and R is called weakly periodic if R = P +N . It is easy to show that every periodic ring is weakly periodic, but whether the converse holds is apparently not known. It has long been known that periodic rings have nice commutativity behavior; in particular, Herstein [10] showed that if R is periodic and N ⊆ Z, then R is commutative—a result which extends easily to weakly periodic rings. Various generalized periodic and weakly periodic rings have been introduced in recent years, and their commutativity behavior has been explored [6, 7, 13, 14]. Define R to be semi-weakly periodic if R\(J ∪ Z) ⊆ P +N . Clearly the class of semiweakly periodic rings is quite large; it contains all weakly periodic rings, all commutative rings, and all Jacobson radical rings. Our purpose is to point out some general properties of semi-weakly periodic rings and to investigate commutativity of such rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Regular Rings Satisfying Weak Chain Condition

In this paper, we shall study regular rings satisfying weak chain condition. As main results, we show that regular rings satisfying weak chain condition are unit-regular, and show that these rings have the unperforation and power cancellation properties for the family of finitely generated projective modules.

متن کامل

Interval valued fuzzy weak bi-ideals of $Gamma$-near-rings

In this paper, we introduce the concept of interval valued fuzzy weak bi-ideals of $Gamma$-near-rings, which is a generalized concept of fuzzy weak bi-ideals of $Gamma$- near-rings. We also characterize some properties and examples of interval valued fuzzy weak bi-ideals of $Gamma$-near-rings.

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

A weak Gordon type condition for absence of eigenvalues of one-dimensional Schrödinger operators

We study one-dimensional Schrödinger operators with complex measures as potentials and present an improved criterion for absence of eigenvalues which involves a weak local periodicity condition. The criterion leads to sharp quantitative bounds on the eigenvalues. We apply our result to quasiperiodic measures as potentials. MSC2010: 34L15, 34L40, 81Q10, 81Q12

متن کامل

A note on the socle of certain types of f-rings

For any reduced commutative $f$-ring with identity and bounded inversion, we show that a condition which is obviously necessary for the socle of the ring to coincide with the socle of its bounded part, is actually also sufficient. The condition is that every minimal ideal of the ring consist entirely of bounded elements. It is not too stringent, and is satisfied, for instance, by rings of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005